Lecture Objectives

- to understand the information systems problem-solving process
- to be aware of the main phases of the systems development lifecycle

Example system

- Met ticket

Business Information Processing Problems

- Information problems occur when an organisation’s current systems fail to meet its information and processing needs adequately.

 Some causes:
 - changing information needs
 - business expansion
 - cost pressures
 - competitive pressures
 - new business activities
 - inefficiencies
 - Information processing problems can occur at any stage of the information processing cycle

Characteristics

- complex - the number and variety of components and their interactions
- non-standard - many organisations have similar needs, but rarely are these identical solutions must be customised for specific circumstances
- unstructured - problems cannot easily be broken down into clearly-defined components with easily-identified connections between them

How do you solve problems?

The ‘Intuitive’ Approach versus
The ‘Scientific’ Approach
‘Intuitive’ Problem-solving

- “I don’t have to think about how to solve the problem; I just do it”
- No conscious reasoning process or planning involved
- Use accumulated knowledge/understanding/judgement/heuristics (i.e. ‘rules of thumb’), but do not make them explicit
- The most commonly used approach for everyday problem-solving

'Scientific' Problem-solving

- Identify that there is a problem (“two proofs”)
- Describe it
- Analyse the problem and specify what needs to be done to fix it
- Identify the potential courses of action which may fix the problem - evaluate them and choose the best one
- Describe in detail the chosen course of action and put the chosen course of action into effect
- Evaluate the outcome of the chosen course of action and check that it has fixed the problem

Which Approach to Use?

- Depends on:
 - nature of the problem
 - complexity of the problem
 - degree of standardisation of the problem
 - experience in solving this kind of problem
 - extent to which the problem can be structured into small self-contained parts

Approaches to information systems development

- early computer information systems development focused on technology, programming and technical skills
- systems developers were technically trained and skilled, and used rule-of-thumb and personal experience as the basis for developing systems
- as computer use became more widespread, a backlog of computer application requests developed, existing applications increasingly required changes, and changes made tended to have unexpected and undesirable effects
- these problems led to awareness of the need for an overall accepted, standardised approach to system development

The Process of System Development

- There is no ‘universal’ problem-solving process which can meet the needs of all system development situations
- Approaches to developing information systems to solve business information processing problems must be tailored to meet the needs of the situation
- Some elements of the system development process can be ‘standardised’ to some degree

The Systems Development Lifecycle (SDLC)

The concept of the systems development life cycle (SDLC) is an attempt at achieving this standardisation. It provides:

- a systematic and orderly approach to solving business information and processing problems
- a means of managing, directing, monitoring and controlling the process of system building, including:
 - a description of the process - steps to be followed
 - deliverables - reports/programs/documentation/etc
 - milestones - dates of completion of steps or deliverables
The Systems Development Lifecycle

- it has several phases that define the progress of the development process
- it is often adapted to suit the organisational, human and technical needs of organisations and system development projects
- there are many variants of the SDLC: traditional “waterfall” or linear model, iterative model, spiral model etc.
- we will consider the traditional waterfall model first

Benefits of SDLC

- breaks the problem-solving process into manageable steps
- identifies and defines everything which needs to be done, and how it should be done
- identifies the resources needed in each step
- identifies who will do each activity and when they will do it
- provides a basis for project planning

Principles of System Development

- get the owners and users involved
- use a problem-solving approach
- establish phases and activities
- establish standards for consistent development and documentation
- justify systems as capital investments
- don’t be afraid to cancel or revise project scope
- divide and conquer
- design systems for growth and change

Systems Development Phases

Initiation

- a preliminary investigation of the problems, opportunities, constraints and available resources in order to decide on a course of action
 - enhance existing system?
 - develop a new information system?
 - do nothing ... add it to the backlog?
- define the system scope: the functions/activities which are to be developed/redeveloped: poor scope management often results in unsuccessful systems
Initiation

- Defining the project scope includes identifying:
 - key stakeholder groups
 - perceived problems and opportunities
 - constraints
 - possible solutions & client expectations
- Key deliverable is a feasibility report:
 - Includes overview of proposed solutions with cost/benefit analyses for each solution

Analysis (What?)

- Define the client’s requirements (What?)

Design (How?)

- Define how the system will be implemented

Implementation (Build)

- Build and deliver the system
Implementation

- Build/modify databases and networks as required
- Build and test programs
- Prepare users for new system
 - acceptance testing, user documentation, user training, maintenance procedures
- Finalise system and technical documentation
- Install the system

Review

- What went wrong/right? Why?

Review the system and the project

MAINTENANCE

Review the system and the project

Problem/New ideas

Review Report

Project issues and system bugs

Project staff

Review

- How well were the system and project objectives met?
- Client’s requirements met, within budget, on time?
- Can further benefits be realised?
- Are major changes required?
- How successful was the development process... what can we learn?
- Review the maintenance effort

Maintenance

- Fix it / Make it better

Fixes and enhancements

Maintenance

- Corrective - fix errors
- Adaptive - satisfy changing needs
- Perfective - enhance performance
- Preventative - fix potential problems

If the cost of maintenance is too high consider other options:
- new development, purchase a software package, re-engineer/modify

Systems Development: Cross Life Cycle Activities

Cross Life Cycle Activities are those which overlap many or all of the life cycle phases. Some of these are:
- Quality - must be embedded in the process of systems development to achieve a quality outcome
- Project Management - to monitor and control the project and ensure it stays on track
- Documentation - essential at every stage to help ensure project and system viability
- Ethics - voluntary compliance with guidelines of IS/IT professional societies
Quality

- Quality is defined as fitness for purpose and concerns both process and product.
- Error detection and correction in analysis and design is much cheaper than after the system is implemented.
- Achieving quality requires that organisational structures, responsibilities, procedures, processes and resources for implementing quality management are in place.

Project management

- Select systems development methodology
- Plan the project tasks
- Estimate the resources and time required to complete individual phases of the project
- Staff the project team
- Organise and schedule the project effort(tasks/time/people/technical resources) and therefore cost
- Control the project development: direct the team, monitor progress, replan, restaff, reallocate resources

Documentation

- Various types of documentation must be produced throughout the SDLC
- The data dictionary plays an important role during and after systems development:
 - A repository for information about and definitions of all “objects” identified during development
 - It supports and is maintained throughout the system lifecycle
 - It provides an important source for system documentation

Professional ethics

- Australian Computer Society (ACS) Code of Ethics for IT professionals
 - your reputation
 - your client's interests
 - confidentiality
 - the client's own and their competitors'
 - impartiality
 - honesty

Ethical issues in IT

- Designing a controversial computer system
- Software piracy
- morality v. ethics

Systems Development: The systems developer's skills

Systems developers require many different skills during the SDLC. Some of these are:
- Interpersonal skills - to communicate effectively, facilitate groups, work in teams, manage expectations and change, deal with organisational politics
- Analytical skills - to identify problems and determine solutions
- Business knowledge - understanding of business systems
- Technical skills and knowledge - to use the technology, and understand its potential and limitations
- Management skills - to manage resources, projects, risk, and organisational change
Some Approaches to Systems Development

There are many different approaches to developing systems depending on the nature of the systems and the users' needs. Some of these are:

- Traditional Waterfall SDLC - formal approach which partitions development into distinct phases
- Prototyping - an iterative process of building an experimental system rapidly
- Application Packages - purchase commercially available software
- Joint Application Development (JAD) - a workshop approach in which a facilitator, users, managers and developers work intensively together over a short period (days) to specify requirements and design a system
- Participatory Design (PD) - where the central focus is the users participating actively in system development
- RAD - rapid application development using techniques to build systems quickly where appropriate
- The organisation's information technology department (in-house development)
- End-user computing - development of systems by end-users with minimal assistance
- Outsourcing - contracting development to external providers
- IT consultants
- Often a combination of the above

Who does Systems Development?

- The organisation's information technology department (in-house development)
- End-user computing - development of systems by end-users with minimal assistance
- Outsourcing - contracting development to external providers
- IT consultants
- Often a combination of the above

Summary

There is no such thing as a 'correct', 'standard' development lifecycle approach to system development, because all information and processing problems are different and need different system development approaches.

References