Topic: Implementation

Lecture 10

Implementation Issues

At the completion of this lecture you should:
- be aware of the tasks involved in the implementation phase of information system development
- be aware of the responsibilities of the systems analyst, the client and the users in this phase
- be able to develop a test plan for an information system and to perform testing according to that plan
- be able to develop a suitable plan for conversion from an existing system to a new system
- be aware of training and other user-oriented issues in installation of a new system

Lecture Objectives

- Systems Implementation
 - Acceptance Checklist, Implementation Schedule, Training Schedule, Re-estimate
 - Training Guides, User Manuals
 - Test Data Preparation, System Test: Functional & Performance, Test Conversion
 - Acceptance Test
 - Computer/Documentation, I/O Documents, Operating Guide

- Systems Implementation
 - Conduct Training
 - Get System Ready
 - For Startup
 - Conduct System Acceptance
 - Operations Handover
 - Conduct System Wrap-Up

Testing

- Testing is ...
 - "the process of exercising or evaluating a system by manual or automatic means to verify that it satisfies specified requirements or to identify differences between expected and actual results" (IEEE, 1983)
 - "Anyone who believes that his or her program will run correctly the first time is either a fool, an optimist, or a novice programmer." (Anon.)

Principles of Testing

- Testing is the process of executing a program with the intention of finding errors
 - an attempt to 'break' the program
 - It is impossible to completely test any nontrivial module or any system
 - when do you stop testing?

version: Jan 97 updated by H. Smith
Software Errors

- Can arise for any of several reasons
 - the specification may be wrong
 - the specification may specify something that is physically impossible given the H/W and S/W
 - the system design may be at fault
 - the program design may be at fault
 - the program code may be wrong

Testing Steps

- All testing involves the following steps:
 - select what is to be measured by the test
 - decide how it is to be tested
 - develop the test cases
 - determine the expected or correct results (you must ensure that expected results can be measured - vagueness does not encourage adequate testing)
 - execute the test cases
 - compare actual results to expected results

Software Errors

- Can arise for any of several reasons
 - the specification may be wrong
 - the specification may specify something that is physically impossible given the H/W and S/W
 - the system design may be at fault
 - the program design may be at fault
 - the program code may be wrong

Testing Steps

- All testing involves the following steps:
 - select what is to be measured by the test
 - decide how it is to be tested
 - develop the test cases
 - determine the expected or correct results (you must ensure that expected results can be measured - vagueness does not encourage adequate testing)
 - execute the test cases
 - compare actual results to expected results

Testing Approaches

- Any software can be tested in two ways:

 White box (or glass box)
 - Knowing the internal workings of a module so that its logical structure and operations can be systematically tested.

 Black box
 - Knowing functions that the systems is supposed to perform and testing to see if it performs the functions properly.

Testing Approaches

- Any software can be tested in two ways:

 White box (or glass box)
 - Knowing the internal workings of a module so that its logical structure and operations can be systematically tested.

 Black box
 - Knowing functions that the systems is supposed to perform and testing to see if it performs the functions properly.

Module or Unit Testing

- Each module is tested individually
 - Lists what is being tested
 - Lists expected outcome
 - Identifies data to be used .. all possible combinations

- Who carries out Module Testing?
 - Programmer - tests at code level
 - Analyst - tests at application level

Module or Unit Testing

- Each module is tested individually
 - Lists what is being tested
 - Lists expected outcome
 - Identifies data to be used .. all possible combinations

- Who carries out Module Testing?
 - Programmer - tests at code level
 - Analyst - tests at application level

Stages of Testing

- Performance test
- Function test
- Unit (module) test
- Integration test
- Acceptance test
- System in use
- Accepted system
- Validated software
- Functioning system
- Integrated modules
- Tested modules

Stages of Testing

- Performance test
- Function test
- Unit (module) test
- Integration test
- Acceptance test
- System in use
- Accepted system
- Validated software
- Functioning system
- Integrated modules
- Tested modules

Test Plan

<table>
<thead>
<tr>
<th>Test No</th>
<th>Condition being tested</th>
<th>Expected results</th>
</tr>
</thead>
</table>

Test Plan

<table>
<thead>
<tr>
<th>Test No</th>
<th>Condition being tested</th>
<th>Expected results</th>
</tr>
</thead>
</table>
Integration Testing

- Verifies that the components of a system work together as described in the program design and system design specifications. It is necessary because
 - data can be lost across interfaces
 - a function may not perform as expected when combined with another function
 - one module can have an adverse effect on another
- Integrating modules is best done using an incremental approach - easier to detect and correct errors.

There are a number of strategies that can be used to carry out integration testing:

- Big-bang testing
- Incremental Approaches:
 - Top-down testing
 - Bottom-up testing
 - Sandwich testing
- Any incremental integration testing needs a combination of stubs and drivers to work

Using Stubs and Drivers

- Stubs and drivers link modules to enable them to run in an environment close to the real one of the future.

Stubs:
- take the place of modules that are called but have not yet been coded
- may be invoked or receive or transmit data to the test module as required.

Drivers:
- call the module under test and pass it test data

Big Bang Testing

- Throw them all together at once

 Advantages:
 - None - perceived to be faster

 Disadvantages:
 - difficult to find and isolate the cause of any errors that appear
 - interface errors cannot easily be distinguished from other errors.

Incremental Approach to Testing

- REPEAT UNTIL the system is complete
 - Implement and unit test a module
 - Add the module to the existing combination
 - Test and debug the new combination
- END REPEAT
- Deliver the system

 Each time through the loop, the part of the system implemented will be working
 - crucial interfaces are not left till the end
 - resource usage is better distributed

Top Down Testing

- Implement the top module of a structure chart first

 - Each subordinate module is simulated by a stub or dummy module.
 - Each stub is replaced by a real module and the structure re-tested until the bottom level of the chart has been reached.
Top Down Testing

- **Advantages**
 - Feedback to users
 - Skeleton versions
 - Project less likely to be axed
 - Major system interfaces are tested
 - Testing resources are distributed more evenly
 - Implementers can see early results
 - If time is short, can begin other parts of the development cycle - is this appropriate?
 - Shows progress - working modules vs kilos of code

- **Disadvantages**
 - A large number of stubs may be required
 - Writing realistic lower level stubs may be difficult and time consuming, i.e. more costly

Bottom Up Testing

- **Implement the lowest modules of a structure chart first**

- **Advantages**
 - Project less likely to be axed
 - Testing resources are distributed more evenly
 - Implementers can see early results
 - Feedback to users (to some degree)
 - Driver modules are generally easier to develop than stubs - therefore less costly

- **Disadvantages**
 - No working program can be demonstrated until the last module is tested
 - Major top-level interfaces that may be critical are tested late
 - Cannot implement intermediate versions of the system

Sandwich Testing

- **Combines the top-down and bottom-up approaches**

- **Advantages**
 - A target layer is chosen based on the structure and characteristics of the module hierarchy
 - The target layer is usually the one just above all the general purpose utility modules
 - A top-down approach is used above the target layer
 - A bottom-up approach is used below the target layer
 - Testing converges on the target layer

- **Disadvantages**
 - A large number of stubs may be required
 - Writing realistic lower level stubs may be difficult and time consuming, i.e. more costly

System Testing

- **The process of testing the integrated software in the context of the total system it supports**
 - performed after all unit and integration testing is complete

- **Who carries out System Testing?**
 - systems analyst, systems implementers, technical support

System Testing

- **Tests conducted at this stage include**
 - Function tests - demonstrate that all the functions specified for the system in the requirements specification are operational
 - Performance tests - demonstrate that the system meets the non-functional requirements specified.
Performance Testing

- Performed after all programming and integration testing is finished
 - Test cases
 - must cover every aspect of the system’s functionality
 - should have a high probability of detecting errors
 - Test plan
 - should be developed from the original specification
 - must include expected results that are measurable

Function Testing

- Performed after all programming and integration testing is finished
 - Test cases
 - use a test team independent of designers and programmers
 - know what the expected actions and outputs are
 - test both valid and invalid input
 - never modify the system being tested to make testing easier
 - know when the tests should stop

Performance Testing

- Compares the integrated modules with the non-functional system requirements such as speed, performance
 - Stress tests
 - Configuration tests
 - Regression tests
 - Timing tests
 - Quality tests
 - Maintenance tests
 - Human factors tests

Acceptance Testing

- May be completely in user's hands, but often shared between analyst and user
- Criteria for acceptance
 - Final specification
 - presented to the user
 - signed by the user
 - Or
 - produce a definite plan for agreement on the criteria in the specification before you begin - must include results that can be measured

Acceptance Testing

- Involved installing the system at user sites and is required when acceptance testing has not been performed on site
- The test focuses on completeness of the installed system and verification of any functional or nonfunctional characteristics that may be affected by site conditions
- Testing is complete
 - When the customer is satisfied with the results
 - The system can then be formally delivered
Implementing the System

Other implementation tasks
- implementation planning
- finalise documentation
- prepare the site
- convert data into required form and media
- conduct training
- install system
- monitor system
- transition to maintenance mode
- post-implementation review

Implementation Planning

- Implementation stage of the project
 - requires a great deal of coordination with professionals outside the development team
- Implementation plan
 - will have been developed at earlier stage of project
 - will need to be extended in greater detail
 - must be updated to reflect the current situation
- Poor planning can cause significant delays in deadline!
- Tasks
 - finalise acceptance checklist
 - complete and confirm training schedule
 - review and revise implementation plan

Documentation

Finalise Documentation

- Documentation describes how a system works to a wide audience
- The four main areas are
- Training documentation
 - used specifically during the training sessions
 - especially designed to put the novice user at ease
- User documentation
 - tells users how to work with the system and perform their tasks
 - may be a user manual, on-line help, quick reference guide etc

- System documentation
 - a communications tool and to review and revise the system during development
 - also facilitates maintenance and enhancement of the system
- Operations documentation
 - aimed at a centralised operations group (not on-line operators)
 - details what tasks an operator needs to carry out for a particular program

Prepare the Site

- Ensure that facilities are adequate
 - varies in complexity
 - may require new facilities or re-modelling of current facilities for first-time computer systems
 - consider issues such as
 - adequate space for all resources, ergonomic furniture, noise reduction, privacy, security, appropriate electrical connections, uninterrupted power, etc.
- Install the hardware and software required to run the system
 - usually done to a specification
 - must be tested to ensure no damage during transportation, product not defective, product changes between purchase and delivery are acceptable
- People responsible
 - Vendor Engineer
 - Technical Support Group
Topic: Implementation

Data Conversion
- Current production data could be converted in 3 ways:
 - Format, Content, Storage Medium
 - Done according to the conversion plan
 - Manual file conversion is a time-consuming task
- Often needs specially written conversion programs e.g.:
 - Database Load Program
 - Record Transformation Program
- Data must be confirmed to be correct

Data Conversion
- May be simple or complex
 - Depends on system
- May need to support both files
 - Can introduce time lag
 - Files may be out of step
- General procedures involved:
 - Prepare existing files ... no errors, up-to-date
 - Prepare manual files
 - Build new files and validate
 - Begin maintenance of new and old files
 - Work towards established cut-off date
 - Final check of accuracy

Training
- "If you think education is expensive and time-consuming - try ignorance."
 - Bok, 1978

Conduct Training
- Need to consider:
 - Who is the audience?
 - What level of detail should be imparted to the audience?
 - Who should conduct the training?
 - Where should the training be conducted?
 - When should the training be conducted?

Building User Understanding
- Training - a complete and concentrated course in system use at the time of delivery
- Training must be planned:
 - Methods
 - Resources
 - Should also consider help during and after installation for new users, infrequent users and users who want to "brush up"

Building User Understanding
- Training aids:
 - Must be easy to use
 - Reliable
 - Demonstrations and classes
 - Documentation
 - On-line help and icons
 - Expert users
- Supportive User Manager who provides training, motivation, support

version: Jan 97 updated by H. Smith
Method of installation depends on several criteria
- Cost - if there are cost constraints certain choices are not viable
- System criticality - if system failure would be disastrous, the safest approach should be selected regardless of cost
- User computer experience - the more experience the users have, the less necessary it is to delay changeover
- System complexity - the more complex the system, the greater the chance of flaws ... a safer approach is better
- User resistance - need to consider what the users are best able to cope with

Alternatives
- Direct installation or Abrupt cut-over
- Parallel installation
- Phased installation or Staged installation
- Pilot installation or Single Location conversion

Install the System

Install the System

Direct Installation (Abrupt Cutover)
- Old system stops and new system starts

Advantages
- costs minimised

Disadvantages
- high risk

Parallel Installation
- Old and new systems operated concurrently

Advantages
- risks low if problems occur

Disadvantages
- cost of operating both systems 2.5 times the resources

version: Jan 97 updated by H. Smith
Topic: Implementation

Phased Installation (Staged Installation)

- System installed in stages
- Total cutover

Phased Installation (Staged Installation)

- System installed in stages
- Subsequent stages provide more features
- Phases or stages need to be identified at general design
- Advantages
 - lower costs for earlier results
 - benefits can be realised earlier
 - rate of change for users minimised

Phased Installation (Staged Installation)

- Disadvantages
 - close control of systems development is essential
 - costs associated with the development of temporary interfaces to old systems
 - limited applicability
 - demoralising - no sense of completing a system.

Pilot Installation

- Old and new systems operated concurrently

Pilot Installation

- Old and new systems operated concurrently
- Only part of the organisation tries out the new system
- The pilot system must prove itself at the test site
- Advantages
 - risks relatively low if problems occur
 - errors are localised
 - can be used to train users before implementation at their own site
- Disadvantages
 - lack of consistency between different parts of organisation

Monitor Operations

- Monitor user satisfaction
 - with functional requirements
 - with system performance
- Run benchmark tests
- Tune system

version: Jan 97 updated by H. Smith
Transition to Maintenance

- Most organisations have formal procedures set up
- A "maintenance" section is responsible!
- Procedures should be set up to request maintenance
- Owners of the new system must be informed of relevant procedures

Post Implementation Review

- A PIR analyses what went right and wrong with a project. It is conducted 2 to 6 months after conversion by a team which includes user reps, development staff, internal auditors and sometimes external consultants - development team is not in charge!
 - look at original requirements and objectives
 - evaluate how well they were met
 - compare costs of development and operation against original estimates (maintenance costs ??)
 - compare original and actual benefits
 - new system reviewed to see whether more of original or additional benefits can be realised

<table>
<thead>
<tr>
<th>Must not become a witch hunt</th>
<th>What went wrong ???</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Learn for the future !!!</td>
</tr>
</tbody>
</table>

References
